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B
acterial resistance to penicillin was encountered in 

patients (1) within 2 years after mass production of 

the antibiotic began in 1945 (2,3). Since then, the 

emergence of antibiotic resistance has been reported against 

virtually all antibiotics developed to date (4). Organizations 

such as the World Health Organization (WHO) and the US 

Centers for Disease Control and Prevention (CDC) have 

recognized antimicrobial resistance (AMR) as a global threat 

(5,6). The misuse and overuse of antibiotics is a significant 

driver for increasing antibiotic resistance (4,7). If the scientific 

community fails to manage and replenish our antibiotic supply, 

nearly 10 million extra deaths are predicted by 2050 due to 

drug-resistant infections (8-10). 

In a postantibiotic era, many interventions that we currently 

take for granted will be threatened. These include medical 

advances that have occurred in general surgery (11), treatment 

of immunocompromised patients (12), organ transplant 

recipients (13), and patients with prosthetic implants (14).

Importantly, increasing levels of antibiotic resistance are 

already having a profound impact on the care of patients with 

cancer (15). End cancer as we know it is a major priority of the 

Biden Administration (16) as well as medical societies (17), 

but achieving that goal will also require action against drug-

resistant microbes.

Infections are common in patients with cancer, and they 

depend upon effective antibiotics to both prevent and treat 

bacterial infections. Antibiotic failure in patients with cancer 

increases the frequency of sepsis, sepsis-related mortality, 

and sepsis-associated costs of care (18-23). Thus it is not 

surprising that oncologists have been among the first to point 

out the clinical impact of increasing antibacterial resistance. 

For example, a recent study in the United Kingdom reported 

that 46% of the oncologists in the United Kingdom are worried 

that chemotherapy as a treatment for cancer will be difficult 

as a result of drug-resistant infections (24). Optimizing the 

use of current antibiotics and discovery of novel antibiotics 
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are critically important to protect patients with cancer from 

antibiotic-resistant infections in the future because antibiotic 

resistance threatens to undo much of the hard-won progress 

against cancer (25).

Antibiotic resistance is defined as the ability of microor- 

ganisms to survive when exposed to antibiotics that usually 

would kill them or prevent their growth (26). Some of the key 

factors contributing to antibiotic resistance are misuse of an- 

tibiotics in humans and animals, use of antibiotics in animal 

and food industries, lack of rapid diagnosis procedures, and 

the presence of antibiotics in the environment (27). Antibiotic 

resistance can be intrinsic or acquired due to various genetic 

mechanisms. We have highlighted the major mechanisms of 

antibiotic resistance in Table 1 (28-41). Some mechanisms can 

lead to antibiotic resistance in 1 or 2 classes of antibiotics, 

whereas others result in multidrug-resistant (MDR) isolates, 

which are characterized by exhibiting resistance to ≥3 different 

classes of antibiotics (42,43). In 2008, Rice et al designated 6 

groups of bacteria (Enterococcus faecium, Staphylococcus au- 

reus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeru- 

ginosa, and Enterobacter spp.) that were commonly associated 

with antibiotic resistance in the hospital environment and 

referred to them as ESKAPE pathogens (44). In this review, we 

focus on recent updates regarding antibiotic-resistant ESKAPE 

infections, including risk factors, antibiotic use, management, 

and prevention of antibiotic resistance in patients with cancer.

The use of antibiotics and the burden of antibiotic 
resistance in patients with cancer 
Infections are one of the most frequent complications seen 

in patients with cancer (45), and a patient with cancer has a 3 

times greater risk of dying from a fatal infection than a patient 

without cancer (46). Infections are thought to play a primary 

or associated role in the cause of death in approximately 

50% of patients with hematological malignancies or solid 

tumours (47), even if drug-resistant infections are rarely 

recorded as the official cause of death on death certificates 

(48). Bacteria are the most common cause of infections in 

patients with cancer(47, 49). Risks of developing an infection 

include disruption of anatomic barriers (50), surgery, (51) 

chemotherapy-related and radiation-related neutropenia 

(52), and stem cell transplantation (53). More recently, an 

increased risk of infection is reportedly caused by toxicity 

mitigation strategies using newer immunotherapies against 

cancer (54-56). Under neutropenic conditions, patients with 

cancer are subjected to prolonged treatment of antibiotics 

prophylactically and empirically (57,58). However, widespread 

and prolonged use of broad-spectrum antibiotics to reduce 

mortality and morbidity from infections in patients with can- 

cer are likely contributors to the emergence of resistance 

(59-61). In addition, patients with cancer are vulnerable to 

health care-acquired infections as a major source of antibiotic-

resistant organisms (32,62,63).We have summarized several 

Table 1: Antibiotic-resistance mechanisms in ESKAPE bacteriaa

Resistance t ype	           Examples of molecular		  Effected antibiotics		  Examples of antibiotic-resistant 
(Blair 201528)	           mechanisms 			   classes (Kapoor 201730)	 isolates from patients with			 
	 	           (Bax & Griffin 201229) 					     cancer (Reference)

Antibiotic 	           β-Lactamases		      	 Penicillins			  ESBL-producing K. pneumoniae  
inactivation								        (Zhang 201631)b

		            Aminoglycoside-		  Aminoglycosides		  ESBL-producing E. coli 
		           modifying enzymes					     (Cornejo-Juarez 201532)
									         CRE K. pneumoniae (Satlin 202733)c
									         Carbapenem-resistant
									         A. baumannii (Bodro 201434)
									         Methicillin-resistant S. aureus (MRSA)
									         (Bodro 201434)
									         Metallo β-lactamase–producing
									         P. aeruginosa (Toleman 200435)

Antibiotic target 	           Alteration of the peptidogly	 Glycopeptides		  Vancomycin-resistant E. faecium
modification	           can synthesis pathway  		   			   (Alatorre-Fernandez et al. 201765)
et al. 201765)	           Mutations in DNA gyrase 		  Fluoroquinolones		  Fluoroquinolone-resistant clinical isolates 	
									         of E. coli (Conrad 199637)
		            Ribosomal mutations		  Tetracyclines

Antibiotic efflux                   Overexpression of 		  Tetracyclines and		  Efflux pump-overexpressing	                                 	
	                                 multidrug-resistant		  Fluoroquinolones		  K. pneumoniae and E. coli (Hamed 201838)

Reduced permeability     Downregulation or mutations	 Penicillins			  K. pneumoniae with porin deletions 
of antibiotic	         in porin proteins						      (Satlin 201339)

						      Cephalosporins

Abbreviations: CRE, carbapenem-resistant Enterobacterales-like; ESBL, extended-spectrum β-lactamase.
aESKAPE indicates Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.
bESBLs break down and destroy some commonly used antibiotics, including penicillins and cephalosporins (Centers for Disease Control and Prevention 201940).
cCRE-like E. coli and K. pneumoniae develop resistance to the group of antibiotics called carbapenems (Centers for Disease Control and Prevention 201941).



studies in which ESKAPE pathogens were isolated from 

patients with cancer since 2015 in Table 2 (31,59-62,64-74). 

These illustrate the prevalence of MDR in different ESKAPE 

pathogens and highlight that prior antibiotic exposure and 

hospital-acquired infections are the major risk factors for 

developing antibiotic resistance in patients with cancer. For 

Figure 1, we derived data from the National Healthcare Safety 

Network (NHSN) 2015 to 2017 adult and pediatric antibiotic 

resistance reports (75,76). to illustrate differences between 

the percentage of central line-associated bloodstream 
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ANTIBIOTIC RESISTANCE INTERPRETATIONS REFERENCE

BSI episodes in patients with cancer  
(January 1995 to May 2015)

Enterococcus 
 faecium (EF)

• Prolonged antibiotic exposure • 403 Episodes of EF BSIs from 21,695 positive blood cultures Tedim 2017 60

• Increase in BSIs due to EF infections observed from  
2005 to 2015

Hematologic neutropenic patients  
(July 2009 to July 2012)

Enterococcus 
 faecium

• Previous hospitalization • Ampicillin-resistant EF (AREfm) colonization was  
detected in 32 of 52 patients (61.4%)

Sanchez-Diaz  
201664

• Levofloxacin extended prophylaxis • Multidrug-resistant (MDR) clones of AREfm in intestine of  
patients with cancer increase the development of bacteremia

BSIs in patients with hematologic malignancies 
(January 2008 to December 2012)

Enterococcus 
 faecium

• Prophylactic antibiotics • 58 Episodes of EF BSI episodes from a total of 15,095 
blood cultures

  Alatorre- 
Fernandez 

2017 65

• Vancomycin therapy during the previous  
3 mo

• Higher mortality was associated with vancomycin- 
resistant  isolates

BSIs in malignant hematology and oncology 
patients (2008- 2014)

Enterococcus 
 faecium

• Prior antibiotic exposure • 96 Patients with EF BSIs were included in the study Xie 202059

• Higher 30-d mortality was associated with   
vancomycin-resistant isolates 

BSIs in patients with hematologic malignancies 
(January 2012 to December 2014)

Pseudomonas 
 aeruginosa (PA)

• Previous hospitalization • 64 Patients with PA BSIs were studied Tofas 202061

• Prior use of fluoroquinolones • 37.5% Isolates were MDR

• PA is an important pathogen in patients who have  
hematologic malignancies associated with high mortality

BSIs in patients with hematologic malignancies 
and hematopoietic cell transplant recipients 
(January 2012 to March 2018)

Pseudomonas 
 aeruginosa

• Fluoroquinolone prophylaxis • 55 Episodes of PA bacteremia among 51 patients Hakki 2019 66

• Fluoroquinolone prophylaxis was associated with  
non- susceptibility to meropenem, but not to  
anti-pseudomonal β−lactams or aminoglycosides   

BSIs in neutropenic patients with cancer  
(January 2006 to May 2018)

Pseudomonas 
 aeruginosa

• Prior therapy with piperacillin- 
tazobactam

• 1217 Episodes of BSI due to PA across 34 centers  
in 12 countries

Gudiol 

202067

• Prior anti-pseudomonal carbapenem use • The rate of MDR increased significantly over the study period

• Fluoroquinolone prophylaxis

Respiratory infections in patients with lung 
cancer (September 2017 to October 2018)

Klebsiella 
 pneumoniae (KP)

• HAIs • KP was identified in 27 of 47 patients who had lung 
cancer with respiratory infection

Ding 202068

• 51.4% KP isolates were MDR and the dominant strain causing 
lung infection in patients with lung cancer in the study

Patients who had cancer with BSIs, HAIs, and 
intra-abdominal infections 
(February to July 2013) 
 

Klebsiella 
 pneumoniae

• History of systemic steroid • In total, 230 consecutive cases of KP infection were studied Zhang 2016 31

• Combination antimicrobial therapy • 12.6% of hypervirulent KP isolates produced  
extended-spectrum  β−lactamase   
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BSIs in malignant hematology and oncology 
patients (January 2014 to September 2018)

Klebsiella 
 pneumoniae

• Carbapenem exposure within 30 d 
before the onset of BSIs

• 89 patients with KP bacteremia were included in the study Liu 201969

• Carbapenem-resistant KP caused more mortality than  
carbapenem-susceptible KP (55.0% vs 15.9%; P=.001)   

Patients with cancer (2006 to March 2015) Methicillin-resistant 
Staphylococcus aureus 

 (MRSA) 

 • HAIs • 21.1% of MRSA was documented from 450 patients 
reported with S. aureus  infection 

Bello- Chavolla 

201870

• Protective factors for mortality included catheter removal 
and initiation of adequate treatment for S. aureus <48 h  
after  positive blood cultures

 Patients with erythrodermic cutaneous T-cell 
lymphoma (CTCL) (2012- 2016)

Staphylococcus 
 aureus

• Of 50 events, 17 (34%) were due to MRSA Emge 2020 71

• The MRSA prevalence was high in patients with 
erythrodermic CTC

Patients with cancer 
(June 2014 to March 2016)

Methicillin-resistant  
Staphylococcus aureus

• 120 Isolates (40 community-acquired and 80 hospital-  
acquired MRSA) were included in the study

Shehata 

201972

• Patients with community-acquired MRSA showed  
remarkable ability to acquire MDR after irradiation

Patients with cancer (July 2017 to January 2018) cinetobacter 
 baumanni (AB)i

 • 48 AB isolates were recovered from 520 blood samples Wasfi 202073

• Carbapenemases were identified as the main mechanism  
of carbapenem resistance in AB

Patients with cancer—outbreak initiated  
from a single patient (March 2011)

Acinetobacter 
 baumannii

• HAIs • 66 AB strains (62.3%) were considered infection, and 
40 (37.7%) were considered colonization

Cornejo- 
Juarez 

202062

• Highlighted the threat that represents the transfer of colo-
nized patients with MDR strains between institutions

Patients with malignant hematology  
(January 2014 to June 2015)

Acinetobacter 
 baumannii

• Previous carbapenem exposure • 40 Patients with AB bacteremia were identified, 
accounting for 2.9% (40 of 1358) of bacteremia cases

Wang 2017 74

• Previous hospitalization • Patients who had carbapenem-resistant AB infections  
had significantly longer hospital stays

 

Table 2: Antibiotic resistance in patients with cancer: highlights from the last 5 years

Abbreviations: BLIs, bloodstream infections; HAIs, hospital-acquired infections.
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infections by ESKAPE pathogens that tested nonsusceptible 

to selected antimicrobial agents. Vancomycin resistance in E. 

faecium and fluoroquinolone nonsusceptibility in Escherichia 

coli appear to be significantly higher in adult oncology patients 

compared with pediatric patients.

Antibiotic resistance is related to unfavourable 
outcomes in patients with cancer
Antibiotic resistance leads to detrimental effects in pa- 

tients with cancer, who rely on antibiotics to prevent and 

treat infections. Although cancer survivorship has increased 

with the success of modern cancer care, current therapeutic 

approaches continue to make these patients vulnerable to 

infections (77-79). A meta-analysis by Teillant et al found that, 

in postchemotherapy infections, 26.8% of pathogens were 

identified as resistant to the standard prophylactic antibiotics 

that had been prescribed. That study forecasted that a 

reduction in antibiotic efficacy of 30% to 70% would result 

in nearly 4,000 to 10,000 additional infections and 500 to 

1,000 additional deaths per year in the United States among 

patients who go through chemotherapy for hematological 

malignancies (15).

Multiple studies demonstrate the impact of increasing 

resistance on outcomes in this vulnerable population (80-82). 

Bodro et al reported increased persistence of bacteremia 

(25% vs 9.7%), metastatic infection (8% vs 4%), and early case-

fatality rates (23% vs 11%) among patients with cancer who had 

infections caused by antibiotic-resistant ESKAPE pathogens 

compared with other bacterial pathogens. Risk  factors that 

were associated with having an antibiotic-resistant infection 

included comorbidities, prior antibiotic therapy, having a 

urinary catheter, and a urinary tract source of infection. Those 

authors identified a wide variety of pathogens, including: 

methicillin-resistant S. aureus (MRSA), extended-spectrum 

β-lactamase (ESBL)–producing K. pneumoniae, carbapenem-

resistant A. baumannii, carbapenem-resistant and quinolone-

resistant P. aeruginosa, and de-repression of chromosomal 

β-lactamase and ESBL-producing Enterobacter species (34).

A study in 2015 found that 58 of 282 deaths (23%) among 

patients with cancer who required intensive care were caused 

by hospital-acquired infections. In 51 of those 58 cases (88%), 

an MDR pathogen was identified. The overall prevalence of 

MDR pathogens was nearly 40% in microorganisms collected 

from patients who were admitted to the intensive care unit. 

Of the identified MDR pathogens, 20% were caused by E. coli 

(94.4% of these were ESBL producers), 12% were caused by 

S. aureus (90.6% of these were MRSA), 12% were caused by 

E. faecium (18.7% were vancomycin resistant), and 6% were 

caused by A. baumannii (all were MDR) (32).

In 109 patients with hematological diseases who were 

undergoing chemotherapy, overall survival at 30 days was 

analyzed in those who had Gram-negative bloodstream 

infections (BSIs). In patients who had infections caused by 

MDR bacteria, survival was significantly lower compared 

with the survival of those who had infections caused by non-

MDR isolates (85.6% vs 55.9%; P <.001) (83). In addition, 

0    20         40              60                   80 100

% of non-susceptble pathogens

■ Adult
■ Paediatric

Klebsiella spp - ESCs

Pseudomonas aeruginosa – FQs

Escherichia coli – ESCs

Streptococcus aureus – OX/CEFOX/METH

Escherichia coli – FQs

Enterococcus faecium – (VRE)

Figure 1: Antibiotic resistance is common in patients with cancer. This bar graph displays the percentage of pathogens reported from adult and paediatric 
central line- associated bloodstream infections (CLABSIs) that tested nonsusceptible (NS) to selected antimicrobial agents in hospital oncology units in the 
United States from 2015 to 2017

Data for the graph were obtained from the National Healthcare Safety Network 2015 to 2017 adult and pediatric antibiotic resistance reports. *Klebsiella spp. include K. oxytoca and K. pneu-
moniae. ESCs indicates extended- spectrum cephalosporins (cefepime, cefotaxime, ceftazidime, or ceftriaxone); FQs, fluoroquinolones (ciprofloxacin or levofloxacin); OX/CEFOX/METH, oxacillin, 
cefoxitin, or methicillin; VRE, vancomycin- resistant Enterococcus.
 



numerous recent studies support the association of antibiotic 

resistance with unfavourable outcomes in patients with both 

hematological malignancies and solid tumours (84-88). The 

impact of resistance is not limited to the adult population. In 

a tertiary children’s hospital from 2010 to 2014, carbapenem- 

resistant versus carbapenem-susceptible BSI was associated 

with a longer duration of bacteremia (mean, 3.8 vs 1.7 days), 

a higher risk for intensive care unit hospitalization (44.4% vs 

10.1%), and a higher mortality rate (33% vs 5.8%) in patients 

with hematological malignancies and after hematopoietic 

stem cell transplantation (89).

Infections with antibiotic-resistant bacteria have been 

studied less in patients with solid tumours than in those 

with hematological malignancies (90). This could be because 

of a lower incidence of BSIs reported in solid tumours 

compared with hematological malignancies in neutropenic 

patients with cancer (91). One main difference in infections 

between solid and hematological malignancies is the source 

of infection: pneumonia and urinary tract infections were 

frequent among patients with solid tumours, whereas 

endogenous sources and catheter-related BSIs were frequent 

in patients with hematological malignancies (91). The risk of 

infection in patients with solid tumours can be increased by 

factors such as chemotherapy-related or radiation therapy- 

related neutropenia, disruption of anatomic barriers from 

medical devices and surgical or diagnostic procedures, and 

obstruction due to primary or metastatic tumours, resulting 

in postobstructive pneumonia, lung abscess, or urinary tract 

infections. Common sites of infection in patients with solid 

tumours include BSIs related to neutropenia and postsurgical 

site infections in breast, bone, central nervous system, 

and skin (45). Recent epidemiologic data highlight the high 

prevalence of MDR pathogens in these patients (92-94). 

One study reported that patients older than 70 years with 

solid tumours had more frequent infections because of MDR 

organisms compared with patients younger than 70 years (87). 

Another study demonstrated that patients with solid tumours 

were more susceptible to bacteremic cholangitis caused by 

Enterobacteriaceae and E. faecium, highlighting the emergence 

of MDR as a special concern, especially in patients who 

have a second episode of bacteremia (95). AMR can become 

important even during the diagnostic evaluation of solid 

tumours. For example, recent literature has demonstrated 

complications such as increased hospitalization and death 

due to antibiotic-resistant infections after prostate biopsies 

(96,97). Extensive use of fluoroquinolone prophylaxis may 

be associated with an increase in resistant E. coli strains, 

which can result in infections after prostate biopsies (98); as 

a result, broad-spectrum and longer duration of prophylaxis 

is recommended (96,99). Importantly, targeted antibiotic 

prophylaxis with prebiopsy screening has reduced the number 

of infections after the biopsy (100,101).

Cancer and antibiotic resistance also converge to worsen 

health disparities. Certain communities of colour in the United 

States, including African American, Latinx, and indigenous 

communities, experience higher cancer incidence and lower 

survival rates for many types of cancers. Many complex factors 

drive these disparities (102). Similarly, experts have identified 

many reasons to suspect a disparate impact of AMR, including 

differences regarding the use of prescribed and nonprescribed 

antibiotics, barriers to medical care, higher rates of foreign 

travel to regions with high AMR burden, and more likely 

employment in food animal production (103). Taken together, 

the joint epidemics of cancer and AMR can contribute 

significantly to persistent health inequities.

AMR and the cost of treating cancer
The decline of antibiotic effectiveness due to AMR has im- 

posed a massive burden on health-care costs, with an increase 

in hospital admissions (104). Antibiotic resistance is estimated 

to cost nearly US$ 20 billion in health care and US$ 35 billion 

a year in lost productivity in the US economy (4,105). The cost 

of treating infections in patients with cancer adds a significant 

amount to the overall cost of cancer treatment. For example, 

of all-cause health-care costs during first-line chemotherapy, 

neutropenia-related costs accounted for 32.2% in patients 

with non-small lung cancer who were diagnosed with febrile 

neutropenia (106). On the basis of a study published with 91,560 

and 16,859 cancer-related neutropenia hospitalizations 

among adults and children, respectively, the cost of cancer-

related neutropenia hospitalization was US$ 24,770 per stay 

for adults and US$ 26,000 per stay for children in the United 

States (107). Tori et al reported that the cost of treatment 

for an episode of febrile neutropenia after chemotherapy, on 

average, was from US$ 50,000 to US$ 60,000 in 2020 (108).

Although studies have estimated the increased cost of health 

care caused by AMR, the direct costs of AMR related to cancer 

therapy have rarely been studied. In 2004, Watters et al reported 

the cost associated with the treatment of patients with head 

and neck cancer who become colonized or infected with MRSA 

after major surgical procedures. Patients who were colonized or 

infected with MRSA had up to a 3 times more prolonged hospital 

stay compared with those who were not positive for MRSA. 

Furthermore, the authors reported that the cost of antibiotics 

increased by US$ 2,470 per patient because of MRSA (109).

Strategies for preventing antibiotic resistance in 
patients with cancer 
Prevention of infection—minimizing antibiotic usage

Antibiotic prophylaxis is a common practice for preventing 
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infections and infection-related complications under 

neutropenic conditions in patients who have cancer (110,111).

With neutropenic conditions, patients are prone to develop 

fever (febrile neutropenia), indicating possible infection. The 

mortality rate can go up to 11% in patients who have cancer with 

febrile neutropenia (112,113) and can be as high as 50% during 

severe sepsis conditions (114). According to some studies, 

prophylactic use of quinolones reduces the incidence of fever, 

probable infections, hospitalizations, (115,116) and the overall 

mortality rate (110,117). These gains must be balanced with 

observations that patients with cancer who receive prolonged 

antibiotic prophylaxis are at risk for developing breakthrough 

antibiotic-resistant infections (67,118-120).

Previous antibiotic exposure has been recognized as one of 

the main risk factors for AMR development in some patients 

with cancer (59-61,67). In fact, there remains ongoing debate 

in clinical oncology settings about the overall use or duration 

of quinolone prophylaxis in some patients with cancer because 

the procedure failed to reduce overall mortality and increased 

the emergence of resistant strains in some studies (121-124).

Minimizing infections provides an opportunity to reduce 

the use of antibiotics in patients with cancer who have 

neutropenia or those undergoing surgeries and other invasive 

procedures. The CDC, the American Cancer Society, and the 

National Comprehensive Cancer Network provide guidance 

to patients with cancer, caregivers, and their health-care 

teams to prevent infections in patients who have cancer. These 

include educating patients and caregivers about day-to-day 

good practices to prevent infections or to detect infections 

early (125-127).

Antibiotic or chemotherapy administration can result in gut 

microbiota dysbiosis, altering the diversity of bacteria (128-

130). Dysbiosis in the gut microbiota can increase the risk for 

resistance bacteria in the microbiota (131), invasive infections, 

(50) post-transplant complications (such as graft-versus-

host disease in those who undergo hematopoietic stem cell 

transplantation) (132), and reduced efficacy in patients who 

have cancer treated with immunotherapy (133). Monitoring 

gut microbiota for its composition, administering protective 

commensal bacteria to reduce antibiotic-resistant infections, 

and promoting a healthy microbiome could be promising 

approaches for preventing antibiotic resistance, minimizing 

antibiotic use, and leading to positive outcomes in these 

patients (134-136).

Another area of concern for patients with cancer is the 

recognition that there is geographical variability in antibiotic 

resistance. Resistance to antibiotics frequently originates in 

one locality,only to spread to others. For example,vancomycin- 

resistant Enterococci was identified in 1987 in Europe and, 

within 10 years, it represented >25% of Enterococci associated 

with BSIs in hospitalized patients in the United States (137). 

A study by Arcilla et al in 2017 found that 34.3% of 1,847 

travelers who were ESBL-negative before traveling from 

the Netherlands had acquired ESBL Enterobacterales during 

their international travel, with examples of transmission 

within households (138). Furthermore, medical tourists travel 

between health facilities in locations with different rates 

of antibiotic resistance, potentially disseminating resistant 

pathogens (139). With international travel poised to rebound 

after COVID-19, vulnerable groups such as patients with 

cancer should remain aware of infectious risks, including 

information on the prevalence of drug-resistant pathogens 

that might be present in the locations to which they travel.

Promoting the appropriate use of antibiotics among health-

care practitioners and patients will prevent the misuse and 

overuse of antibiotics as well as decreasing costs (140-142). 

Most importantly, this will allow for continued use of the 

existing antibiotic armamentarium (143-145). The required 

duration of antibiotic therapy is inexact and has been disputed 

in oncology settings, leading to unnecessarily extended 

courses of antibiotics and heterogeneity of use between 

practice sites (146-148). Well defined guidelines are required 

after comprehensive studies to establish the optimal duration 

of antibiotic administration to reduce antibiotic overuse 

in oncology settings (149).  For example, vancomycin has 

been shown to be inappropriately prescribed as empirical 

treatment resulting in vancomycin resistance (150).  Fever 

and neutropenia guidelines published by the Infectious 

Diseases Society of America indicate that vancomycin is 

not recommended as a standard part of the initial antibiotic 

regimen for fever and neutropenia and should be considered 

for specific clinical indications. Furthermore, these guidelines 

emphasize the importance of discontinuing vancomycin in 

the absence of Gram-positive organisms (151). Antibiotic de-

escalation and discontinuation should be considered when 

the patient is stabilized or the causative agent is determined 

to reduce overuse (152). Early discontinuation of empirical 

antibacterial therapy in patients with fever of unknown origin 

has been demonstrated to be safe, (153,154) and emerging 

data indicate that continuation of empirical antibiotics until 

absolute neutrophil count recovery could be unnecessary 

(155,156). De-escalating and discontinuation strategies have 

been successfully demonstrated in high-risk neutropenic 

patients who have cancer, with a significant reduction in 

antibiotic use (157-159).

Antibiotic stewardship to optimize antibiotic use

Antimicrobial stewardship has been defined as selection of 

the best antimicrobial treatment at the optimal dose and 

duration, resulting in the best clinical outcome for treating and 



infections – such as those with cancer – have the most to gain 

(173).

Other than health-care settings, it is important to focus 

on more general areas that contribute to the occurrence of 

antibiotic-resistant bacteria. Agriculture, such as the live- 

stock and poultry industries (174), is one important area of 

concern. These industries consume large quantities of anti- 

biotics to protect animals from infection and also to promote 

growth (175,176). According to the 2019 Summary Report 

on Antimicrobials Sold or Distributed for Use in Food-Producing 

Animals by the US Food and Drug Administration, 54% of 

nearly 11 metric tons of antibiotics used in animal agriculture 

are medically important, such as tetracyclines and penicillins 

(174). Antibiotic-resistant bacteria occurring in these settings 

can be transmitted to humans (177-179). Although no studies 

have been performed to correlate antibiotic resistance in farm 

animals and patients with cancer, it is likely that such patients 

could face complications because of colonization of antibiotic-

resistant species in their intestines. Tackling antibiotic 

resistance will require a sustained, multi-faceted approach in 

numerous segments of society.

Antibiotic-resistance surveillance systems for patients with 

cancer: Prediction and prevention of outbreaks

The CDC has defined surveillance as systematic, ongoing 

collection, analysis, and interpretation of health data essen- 

tial for planning, implementing, and evaluating public health 

practice integrated closely with timely dissemination to those 

who need the data (180). Various countries have developed 

their own guidelines for the surveillance of antibiotic-resistant 

bacteria (181-183). Surveillance of AMR involves the tracking 

and analysis of antibiotic-susceptibility test results in bacteria 

isolated from clinical samples. These results, combined with 

clinical and demographic data obtained from patients, enable 

clinicians to provide meaningful interventions to reduce the 

burden of antibiotic resistance (184). Surveillance data can 

be used for predictions. The data from surveillance, merged 

with other risk factors, can be used to develop prediction 

models for antibiotic-resistance development in clinically 

relevant bacterial pathogens. In 2020, Gudiol et al developed 

a clinical prediction model available online that could iden- 

tify neutropenic patients with cancer who are at high risk 

of bloodstream infections because of MDR P. aeruginosa, 

centered on parameters such as patient age and prior 

antibiotic use. Although the study has not been replicated yet 

by other groups, the investigators reported good prediction 

results in patients with cancer from across 34 centres in 12 

countries, indicating that the model may benefit these patients 

by improving the administration of specific empirical antibiotic 

preventing infection with minimal toxicity and a minimal effect 

on subsequent resistance (160,161).

In health-care settings, antimicrobial stewardship teams, 

ideally led by infectious diseases physicians in partnership 

with infectious diseases pharmacists, clinical microbiologists, 

and infection preventionists, are charged with this important 

initiative. Antimicrobial stewardship is especially important for 

patients with cancer and/or those undergoing hematopoietic 

stem cell transplantation, who are prone to serious infections 

and receive multiple courses of antimicrobial therapy during 

the treatment process (162). These patients may have the 

most potential to benefit from antibiotic stewardship because 

past antibiotic exposure is a critical risk factor for developing 

an antibiotic-resistant infection. As discussed above, patients 

who have cancer with antibiotic-resistant infections have 

worse outcomes than those who have antibiotic-susceptible 

infections (163).  Rosa et al evaluated patient outcomes 

related to antibiotic stewardship in patients with febrile 

neutropenia, specifically, mortality in those with hematological 

malignancies and solid tumours. Their study indicated that 

adherence to antibiotic stewardship was independently 

associated with lower mortality (164). However, according 

to a review published by Pillinger et al in 2020, these patient 

populations are frequently excluded from studies of antibiotic 

stewardship, and more efforts are needed to determine the 

broader impact of different stewardship strategies in this 

vulnerable patient population (165). Nevertheless, several 

other studies in hospital-wide intervention programmes 

have demonstrated the impact of antibiotic stewardship on 

decreasing antibiotic resistance system wide and reducing 

antimicrobial expenditures (166-170). Although more data 

in this patient population are needed, it is reasonable to 

conclude that decreases in infections caused by antibiotic-

resistant pathogens in a health-care system would translate 

to improved outcomes across a diverse range of patient 

populations. The Centers for Medicare and Medicaid Services 

require acute care hospitals and long-term care facilities to 

have antibiotic stewardship programmes in place, but their 

impact is uneven because many hospitals lack sufficient 

resources to fully implement stewardship protocols (171). 

Only recently has stewardship become a focus in outpatient 

settings, where high levels of inappropriate antibiotic 

prescriptions persist. Recently implemented Core Elements 

of Outpatient Antibiotic Stewardship by the CDC focus on a 

framework for antibiotic stewardship for outpatient clinicians 

and facilities that routinely provide antibiotic treatment (173). 

Increased resources will be critical to the universal adoption 

of stewardship, and patients at greatest risk for increased 

morbidity and mortality because of antibiotic-resistant 
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the collapse of the antibiotic pipeline. Financial incentives for 

antibiotic innovation should target drugs that will provide 

the most clinical benefit for patients with the most significant 

unmet medical needs (197).

The vast majority of antibiotics used clinically are broad- 

spectrum. Broad-spectrum antibiotics are usually active 

against multiple bacterial species, not just the specific pathogen 

that might be targeted in a particular patient scenario (198).

One major drawback of broad-spectrum antibiotics is the 

development of AMR not only in pathogenic bacteria but also 

in the non-pathogenic commensal bacteria that comprise 

the normal microbiome (199). The development of narrow-

spectrum antibiotics is considered an attractive approach to 

overcoming antibiotic-resistant bacterial infections because 

more specific antibiotics can reduce the selection pressure in 

non-targeted pathogens (200,201). Examples of experimental 

narrow-spectrum antibiotics for ESKAPE pathogens include 

bacteriophages, (202,203) monoclonal antibodies (204), 

bacteriocins (205,206), and antisense molecules, such 

as peptide-conjugated phosphorodiamidate morpholino 

oligomers (207-209). Bacteriophages are bacterial viruses that 

infect bacterial cells, which can cause the bacterium to lyse (210). 

Bacteriophages are specific for bacteria and selectively attach 

to specific receptors on the surface of the host cell (211). Similar 

to phages, human monoclonal antibodies also can be developed 

for specific bacteria and can be targeted by the immune 

system (212,213). Bacteriocins are peptides of different sizes 

produced by various bacteria that exhibit bactericidal activity 

against other bacteria (205,214). Bacteriocins bind various 

receptors on the surface of the target bacteria to trigger 

bactericidal effects (215). Phosphorodiamidate morpholino 

oligomers are designed to target mRNA and block translation 

of the gene of interest (207). Continuing advances in the rapid 

identification of pathogens will enable the opportunity of 

using narrow-spectrum antibiotics. Recent developments in 

diagnostic tests, such as next-generation sequencing, (36,216-

218) matrix-assisted laser desorption ionization–time-of-

flight mass spectrometry (219), and rapid antigen testing, 

(220) have made the prospect of pathogen-specific therapy a 

viable strategy. Additional policies are needed to strengthen 

diagnostic innovation and clinical integration of diagnostics, 

including better outcomes studies to inform clinical use 

and justify appropriate reimbursement (221). Recently, the 

Infectious Diseases Society of America issued new guidelines 

to treat antimicrobial-resistant, Gram-negative infections 

focusing on the efficiency of different antibiotics according 

to the etiology of the infection. These guidelines provide 

preferred or alternative antibiotic treatment options with 

dosages for ESBL-producing Enterobacterales, carbapenem-

treatment and that it may also help optimize the effective- ness 

of antibiotic stewardship programmes (67). A comprehensive 

and predictive model of ESKAPE pathogens theoretically 

could be a useful tool for predicting the emergence of antibi- 

otic resistance in oncology settings and driving the efficient 

utilization of antibiotics. The CDC has increased antibiotic- 

resistance surveillance in accordance with the first National 

Action Plan for Combating Antibiotic Resistant Bacteria, but 

significant gaps in our knowledge remain (185). For example, 

adult and pediatric antibiotic-resistance reports issued from 

2015 to 2017 by the NHSN highlighted health care- associated 

infections from 17 adult and 8 pediatric oncology facilities 

only. The number of oncology facilities that reported data 

was relatively low compared with the total number of health- 

care facilities that reported data in the NHSN (5,626 adult 

centers and 2,545 paediatric centres) (75,76). Furthermore, 

the report separately revealed the percentage of antibiotic 

non-susceptible pathogens recorded from oncology units, as 

summarized in Figure 1. A comparison of the percentage of non-

susceptible pathogens between adult and pediatric oncology 

units reveals higher levels of vancomycin-resistant E. faecium 

and fluoroquinolone-resistant E. coli. However, similar data 

were not found for oncology facilities from previous reports 

by the NHSN, so comparisons from previous years could not 

be made (186-189). Having chronological surveillance data 

on antibiotic resistance in oncology settings will be critical for 

tracking trends and linking rates of resistance to interventions 

made in these patients. Ongoing and future efforts by the CDC 

will help in this regard.

Future innovations in antibiotics and their impact on 
resistance
Although several international and governmental organizations 

have helped fund new efforts, such as CARB-X (Combating 

Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator), 

to spur the development of innovative antibiotics, (190) several 

expert reports have warned that antibiotic business models 

are uniquely broken and require significant reform to bring 

innovative new antibacterials to patients (191-195). Because 

physicians frequently reserve new antibiotics as a last resort 

treatment for infections, this results in a low volume of sales 

(4). An analysis by Towse et al in 2017 estimated that the cost 

of developing an antibiotic is approximately US$ 1,581 million, 

whereas the average annual revenue from an antibiotic’s 

sales is roughly US$46 million (196). This results in significant 

obstacles for the pharmaceutical industry to developing 

new antibiotics (4). A predictable return on investment for 

antibiotic development will likely require the support of the 

federal government enacting policies that could help prevent 



resistant Enterobacterales, and difficult-to-treat P. aeruginosa 

according to the source of infection (222).

Conclusion
Drug-resistant infections are growing in number and cost 

and significantly threaten our ability to care for patients 

with cancer. The cancer community – patients, loved ones, 

clinicians, and scientists – have successfully advocated 

for significant investments in research and public health 

strategies to prevent cancer and increase therapeutic options, 

with the goal of saving and extending lives (223). Because 

antibiotic resistance threatens to undo much of this hard-won 

progress, cancer advocates should consider focusing their 

considerable political power on this public health crisis. Cancer 

and infectious diseases experts must unite to drive the federal 

policy changes necessary to prevent, diagnose, and treat drug- 

resistant infections and to protect the gains that have been 

made against cancer over the past few decades. n
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